40 research outputs found

    Transcription factor regulation and chromosome dynamics during pseudohyphal growth

    Get PDF
    Pseudohyphal growth is a developmental pathway seen in some strains of yeast in which cells form multicellular filaments in response to environmental stresses. We used multiplexed transposon ā€œCalling Cardsā€ to record the genome-wide binding patterns of 28 transcription factors (TFs) in nitrogen-starved yeast. We identified TF targets relevant for pseudohyphal growth, producing a detailed map of its regulatory network. Using tools from graph theory, we identified 14 TFs that lie at the center of this network, including Flo8, Mss11, and Mfg1, which bind as a complex. Surprisingly, the DNA-binding preferences for these key TFs were unknown. Using Calling Card data, we predicted the in vivo DNA-binding motif for the Flo8-Mss11-Mfg1 complex and validated it using a reporter assay. We found that this complex binds several important targets, including FLO11, at both their promoter and termination sequences. We demonstrated that this binding pattern is the result of DNA looping, which regulates the transcription of these targets and is stabilized by an interaction with the nuclear pore complex. This looping provides yeast cells with a transcriptional memory, enabling them more rapidly to execute the filamentous growth program when nitrogen starved if they had been previously exposed to this condition

    DNA sequencing technology and a computational analysis reveals chromosomal domains of gene expression

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references.The first part of this thesis describes the development of polony sequencing, a sequencing technology in which DNA is cloned, amplified and sequenced in a polymer matrix. A complex library of one to ten million linear DNA molecules is amplified by performing polymerase chain reaction (PCR) in a thin polyacrylamide film poured on a glass microscope slide. The polyacrylamide matrix retards the diffusion of the DNA molecules so that each amplification product remains localized near its parent molecule. At the end of the reaction, a number of polymerase colonies, or "polonies", have formed, each one grown from a single template molecule. As many as 5 million clones can be amplified in parallel on a single slide. By including an acrydite modification at the 5' end of one of the PCR primers, the amplified DNA will be covalently attached to the polyacrylamide matrix, allowing further enzymatic manipulations to be performed on all clones simultaneously. Also described in this thesis is my progress in development of a protocol to sequence the polonies by repeated cycles of extension with fluorescent deoxynucleotide. Because polony sequencing is inherently parallel, and sub-picoliter volumes are used for each reaction, the technology should be substantially faster and cheaper than existing methods. Applications for polony sequencing such as gene expression analysis, SNP discovery, and SNP screening will also be discussed. The second part of this thesis describes a computational analysis that tests the hypothesis that chromosomal position affects gene expression. It is shown that, throughout the genome, genes lying close together on the same chromosome often show significant coexpression. This coexpression is independent of the orientation of genes to each other, but is dependent on the distance between genes. In several cases where adjacent genes show highly correlated expression, the promoter of only one of the genes contains an upstream activating sequence (UAS) known to be associated with the expression pattern. These results suggest that in certain regions of the genome a single transcription factor binding site may regulate several genes. It is also shown that evolution may take advantage of this phenomenon by keeping genes with similar functions in adjacent positions along the chromosomes. The techniques that are presented provide a computational method to delineate the locations of chromosomal domains and identify the boundary elements that flank them.Robi David Mitra.Ph.D

    Accurate typing of Human Leukocyte Antigen class I genes by Oxford nanopore sequencing

    Get PDF
    Oxford Nanopore Technologiesā€™ MinION has expanded the current DNA sequencing toolkit by delivering long read lengths and extreme portability. The MinION has the potential to enable expedited point-of-care human leukocyte antigen (HLA) typing, an assay routinely used to assess the immunological compatibility between organ donors and recipients, but the platformā€™s high error rate makes it challenging to type alleles with accuracy. Here, we developed and validated accurate typing of HLA by Oxford nanopore (Athlon), a bioinformatic pipeline that i) maps nanopore reads to a database of known HLA alleles, ii) identifies candidate alleles with the highest read coverage at different resolution levels that are represented as branching nodes and leaves of a tree structure, iii) generates consensus sequences by remapping the reads to the candidate alleles, and iv) calls the final diploid genotype by blasting consensus sequences against the reference database. Using two independent datasets generated on the R9.4 flow cell chemistry, Athlon achieved a 100% accuracy in class I HLA typing at the 2-field resolution

    Zinc cluster transcription factors frequently activate target genes using a non-canonical half-site binding mode

    Get PDF
    Gene expression changes are orchestrated by transcription factors (TFs), which bind to DNA to regulate gene expression. It remains surprisingly difficult to predict basic features of the transcriptional process, including in vivo TF occupancy. Existing thermodynamic models of TF function are often not concordant with experimental measurements, suggesting undiscovered biology. Here, we analyzed one of the most well-studied TFs, the yeast zinc cluster Gal4, constructed a Shea-Ackers thermodynamic model to describe its binding, and compared the results of this model to experimentally measured Gal4p binding in vivo. We found that at many promoters, the model predicted no Gal4p binding, yet substantial binding was observed. These outlier promoters lacked canonical binding motifs, and subsequent investigation revealed Gal4p binds unexpectedly to DNA sequences with high densities of its half site (CGG). We confirmed this novel mode of binding through multiple experimental and computational paradigms; we also found most other zinc cluster TFs we tested frequently utilize this binding mode, at 27% of their targets on average. Together, these results demonstrate a novel mode of binding where zinc clusters, the largest class of TFs in yeast, bind DNA sequences with high densities of half sites

    Retrotransposon profiling of RNA polymerase III initiation sites

    Get PDF
    Although retroviruses are relatively promiscuous in choice of integration sites, retrotransposons can display marked integration specificity. In yeast and slime mold, some retrotransposons are associated with tRNA genes (tDNAs). In the Saccharomyces cerevisiae genome, the long terminal repeat retrotransposon Ty3 is found at RNA polymerase III (Pol III) transcription start sites of tDNAs. Ty1, 2, and 4 elements also cluster in the upstream regions of these genes. To determine the extent to which other Pol III-transcribed genes serve as genomic targets for Ty3, a set of 10,000 Ty3 genomic retrotranspositions were mapped using high-throughput DNA sequencing. Integrations occurred at all known tDNAs, two tDNA relics (iYGR033c and ZOD1), and six non-tDNA, Pol III-transcribed types of genes (RDN5, SNR6, SNR52, RPR1, RNA170, and SCR1). Previous work in vitro demonstrated that the Pol III transcription factor (TF) IIIB is important for Ty3 targeting. However, seven loci that bind the TFIIIB loader, TFIIIC, were not targeted, underscoring the unexplained absence of TFIIIB at those sites. Ty3 integrations also occurred in two open reading frames not previously associated with Pol III transcription, suggesting the existence of a small number of additional sites in the yeast genome that interact with Pol III transcription complexes

    Accurate typing of Human Leukocyte Antigen class I genes by Oxford nanopore sequencing

    Get PDF
    Oxford Nanopore Technologiesā€™ MinION has expanded the current DNA sequencing toolkit by delivering long read lengths and extreme portability. The MinION has the potential to enable expedited point-of-care human leukocyte antigen (HLA) typing, an assay routinely used to assess the immunological compatibility between organ donors and recipients, but the platformā€™s high error rate makes it challenging to type alleles with accuracy. Here, we developed and validated accurate typing of HLA by Oxford nanopore (Athlon), a bioinformatic pipeline that i) maps nanopore reads to a database of known HLA alleles, ii) identifies candidate alleles with the highest read coverage at different resolution levels that are represented as branching nodes and leaves of a tree structure, iii) generates consensus sequences by remapping the reads to the candidate alleles, and iv) calls the final diploid genotype by blasting consensus sequences against the reference database. Using two independent datasets generated on the R9.4 flow cell chemistry, Athlon achieved a 100% accuracy in class I HLA typing at the 2-field resolution

    Non-EST-based prediction of novel alternatively spliced cassette exons with cell signaling function in Caenorhabditis elegans and human

    Get PDF
    To better understand the complex role that alternative splicing plays in intracellular signaling, it is important to catalog the numerous splice variants involved in signal transduction. Therefore, we developed PASE (Prediction of Alternative Signaling Exons), a computational tool to identify novel alternative cassette exons that code for kinase phosphorylation or signaling protein-binding sites. We first applied PASE to the Caenorhabditis elegans genome. In this organism, our algorithm had an overall specificity of ā‰„76.4%, including 33 novel cassette exons that we experimentally verified. We then used PASE to analyze the human genome and made 804 predictions, of which 308 were found as alternative exons in the transcript database. We experimentally tested 384 of the remaining unobserved predictions and discovered 26 novel human exons for a total specificity of ā‰„41.5% in human. By using a test set of known alternatively spliced signaling exons, we determined that the sensitivity of PASE is āˆ¼70%. GO term analysis revealed that our exon predictions were found in the introns of known signal transduction genes more often than expected by chance, indicating PASE enriches for splice variants that function in signaling pathways. Overall, PASE was able to uncover 59 novel alternative cassette exons in C. elegans and humans through a genome-wide ab initio prediction method that enriches for exons involved in signaling
    corecore